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Abstract. Network Intrusion Detection Systems (NIDS) are tradition-
ally built to minimize the total number of misclassifications without con-
sidering financial implications. However, false positives and false nega-
tives both impose monetary costs on an organization through wasted
analyst time and damage from missed attacks. This work presents an
approach which uses economically informed decision making to develop
a cost-sensitive intrusion detection architecture that incorporates the
cost of handling such misclassifications. Specifically, we propose a cost-
sensitive supervised machine learning model alongside an economically
informed thresholding technique to minimize the overall cost when deal-
ing with cyber attacks. The models are evaluated across four unique
scenarios in two environments, highlighting the broad suitability of the
architecture. The various scenarios allow our architecture to be evaluated
across a range of notoriously difficult to determine costs. Experimental
results for the two domains demonstrate an average cost reduction of
59% over traditional accuracy-based intrusion detection systems. The
trade-off, measured in reduced accuracy, is minor, with an average accu-
racy reduction of 1.25%. Our architecture allows organizations to make
detailed and informed decisions about resource allocation when imple-
menting security tools.

Keywords: Critical infrastructure · Intrusion detection · Security eco-
nomics.

1 Introduction

Operational technology (OT) networks operate and manage critical infrastruc-
tures such as refineries, power plants, and water treatment facilities, where the
integrity of such systems is paramount. These networks have traditionally relied
on physical isolation and security through obscurity to mitigate exposure to cy-
ber threats. However, in recent years they have become increasingly interwoven
with public networks in pursuit of increased efficiency [9]. The accelerated rate
at which these systems are being connected to public networks has outpaced the
cyber security response. The landmark ransomware attack on several Colonial
Pipeline systems in May 2021 highlighted the potential consequences of contin-
uing to integrate OT networks with public networks in the absence of sufficient
cyber security polices.
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To combat the expanding threat landscapes, intrusion detection systems
(IDSs) are used to identify and stop attacks. The goal of the IDS is to analyze
network traffic and attempt to classify incoming traffic as benign or malicious.
These IDSs are predominantly evaluated on their ability to minimize false pos-
itive and false negative classifications. While both of these classification errors
equally affect the accuracy of the IDS, the financial impact of false positives and
false negatives can vary widely. For cyber security teams operating on a finite
budget, the economic efficiency of their reaction to potential threats is of utmost
importance. This paper presents a framework to incorporate economic informa-
tion into the intrusion detection and response process. Specifically, we apply
cost-informed weights to the machine learning process, as well as a cost-based
thresholding technique, to influence the detection model’s decision making.

Cost-informed weights are used to perform cost-sensitive learning, a subset of
machine learning which is dedicated to scenarios with varying misclassification
penalties [4]. Consider a buffer overflow attack which costs a company $10,000 if
it is successfully exploited, yet only $20 for an analyst to review the traffic. The
cost of a false positive, or a nonmalicious packet flagged as malicious, is inex-
pensive compared to the false negative, a malicious packet incorrectly labeled as
nonmalicious. Thus, if the IDS generates 200 false positives in order to correctly
identify 1 buffer overflow attack, the organization still saves a total of $6,000.
Integrating a cost-sensitive approach into the machine learning-based IDS allows
for an organization to influence the model’s learning process to force it to focus
on high-priority attacks.

Thresholding techniques identify optimal decision boundaries for machine
learning classifiers. This work introduces a cost-based thresholding technique
referred to as a scoring manager. This method analyzes the probability values
from each of the classes as well as their associated false positive and false negative
costs in order to determine thresholds for each class. The scoring manager then
creates an economic filter which can be used in combination with the cost-
informed weights to optimize the expected cost.

Cyber security costs are notoriously difficult to study, as they can vary widely
between, and even within, industries. To combat this, we apply our framework
to four scenarios across two OT environments. The scenarios represent unique
salaries, expected financial impacts, and cyber security maturity levels. We find
that our framework consistently reduces costs incurred by the organizations in
all scenarios. The overall costs are reduced in all of the eight scenarios, with an
average reduction of 59%. The loss in accuracy to achieve these reductions is
minor, with an average accuracy loss of 1.25%.

In Section 2, we review related literature. Section 3 details the architecture
used. In Section 4, we provide the data used, as well as detail our methodology. In
Section 5, we detail our findings and in Section 6 we provide conluding remarks.
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2 Related Work

The approach presented in this paper combines ideas from two fields: cost-
sensitive machine learning and security economics. On the one hand there is
a need to develop effective intrusion detection systems to minimize the likeli-
hood that an attack succeeds. On the other, there is a need to develop solutions
that allow stakeholders to make economically informed security decisions. This
section presents work related to these two fields.

Cost-sensitive intrusion detection has emerged as one solution to handling the
inherent class imbalance of network intrusion detection. One popular approach is
to utilize cost-sensitive machine learning and weight the minority classes accord-
ing to class distribution. For example, in [14] the authors propose an ensemble
approach based on Deep Neural Networks (DNNs) which use class minority dis-
tributions to influence the training process. Specifically, they apply a bootstrap
aggregation approach in which ten DNNs are trained on unique training sub-
sets, which are balanced by weighting the minority class based on the ratio when
compared to the majority class. In [6], the authors propose a cost-sensitive IDS
based on the XGBoost algorithm in which attack classes are weighted based
on their probabilities, or ratio compared to the majority. They compare their
cost-sensitive weighting approach to the SMOTE oversampling algorithm.

In [5], the authors propose a cost-sensitive ensemble approach in which both
a weighted training scheme and an oversampling method is used to identify net-
work intrusions. Three layers, based on the cost-sensitive DNN, Random Forest,
and XGBoost algorithms, are proposed which have varying levels of detection
granularity. The first layer incorporates a cost-sensitive DNN in which class ra-
tios are used to weight the minority and majority classes. The second and third
layers rely on oversampling techniques to rebalance the distributions.

In all three related works, the authors rely on class distributions to derive the
weights. This work proposes an economically informed weighting scheme, allow-
ing the user to tune the IDS operations to fit the organization’s requirements.

An economic approach has proved useful in understanding and managing cy-
bersecurity risks [2]. Typically, security controls are developed and evaluated on
their technical merits alone, such as their effectiveness in detecting and prevent-
ing attacks. But cybersecurity investment comes at a cost, and the interventions
they introduce do too. Restricting access to networks and systems may reduce
the likelihood of an attack, but it can also make completing a mission more
difficult and expensive. By quantifying the costs and benefits of cybersecurity
controls, it becomes possible to rationally evaluate cybersecurity investments
and configure their operations in a way that optimally manages risk.

For example, many organizations balk at making investments to strengthen
the cybersecurity of industrial control systems, despite the presence of long-
standing weaknesses in these systems. One way to encourage investment is to
demonstrate that the benefits outweigh the added costs. Papa et al. conducted a
cost-benefit analysis for retrofitting wastewater facilities with an ICS attack de-
tection system [11]. They estimated the costs associated with a successful attack
using public data on harms, and then showed the circumstances under which
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Fig. 1. Proposed cost-sensitive IDS architecture diagram.

an investment in a detection system to reduce the likelihood of accidental or
intentional overflows could be justified.

The notion that IDSs must not only optimize security but also minimize
cost has been proposed before. In 2002, [7] explored the problem of building
cost-sensitive IDS. Their solution considers five different types of cost: develop-
ment, operation, damage (when an intrusion is successful), manual response and
automated response to attacks. They define a model to formulate the total ex-
pected cost of the IDS (using all five costs) and propose cost-sensitive ML-based
techniques that are designed to reduce the overall cost of intrusion detection.

Another approach is to evaluate output from binary classifiers. Receiver oper-
ating characteristic (ROC) curves are commonly used to evaluate the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. ROC
curves have also been used to evaluate cyber security costs. [10] investigated the
use of ROC curves to optimize filters that ultimately define whether there is a
need to respond to an intrusion and the associated cost. The advantage of the
approach is that it helps identify a more optimal allocation of resources that
minimizes overall expected cost.

The proposed IDS architecture relies on cost-sensitive machine learning, but
takes an entirely different financial-based approach when it comes to class weight-
ing. Additionally, we incorporate an economically informed thresholding tech-
nique which adds an additional layer of expected cost optimization.

3 Cost-sensitive OT IDS Architecture

The machine learning-based architecture was designed for real-time intrusion
detection using the multi-stage approach shown in Figure 1. Four sequential
stages analyze incoming network traffic and generate security alerts for malicious
activity: feature extraction, preprocessing, machine learning and score managing.

The detection framework uses a cost-sensitive machine learning model, which
is trained offline, to generate predictions/security alerts for each packet sent over
the network. Security alerts are sent to an analyst for review, thus the architec-
ture can work asynchronously apart from the network reducing any impact on
bandwidth. Each stage of the framework contains tunable parameters which can
be adjusted to meet the needs of any particular network it is deployed on.
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3.1 Feature Extraction

Feature extraction and engineering refers to the process of transforming raw
data and creating new features or variables suitable for use in machine learning
models. In this particular domain, feature extraction refers to the process of
extracting meaningful features from raw packets captured on the OT network.
These features convey not only the state of that particular packet but may also
provide information about the overall state of the OT system.

Network packets are messages formatted and sent over an established net-
work. These messages are formatted using a protocol stack used to give con-
text to the data being sent. Each protocol in the stack appends a header to
the packet (and sometimes a trailer), providing incrementally more information.
Feature extraction is a two-step process that identifies basic and statistical fea-
tures. Basic packet features are extracted directly from from packet headers,
such as addresses, port numbers, and control flags. These features are crucial
to understanding the context of a particular packet within a network. In con-
trast, statistical-based metrics provide insight about the network at-large, and
help characterize communication patterns. This includes information such as
transmission rates for packets as well as average packet sizes. These are calcu-
lated using a running average for variables of interest in a sliding window with
a configurable time width (e.g. one second).

3.2 Pre-processing

Feature pre-processing involves the transformation of features/variables to op-
timize them for use with machine learning algorithms. These transformations
include handling any missing values, re-scaling data to remove biases, and re-
structuring features to match the assumptions made by some learning algo-
rithms. The first step of pre-processing involves handling missing values which
occur when the framework attempts to extract information related to a protocol
that the captured packet does not use. Missing values are imputed with zeros,
which signify the absence of a particular feature from the packet. For example,
a TCP related feature would be set to zero when analyzing a UDP packet.

State variables, such as TCP control flags, are one-hot encoded to binary rep-
resentations in order to retain their categorical information. For discrete struc-
tured variables, such as addresses, the encoding scheme segments the variables
into multiple features by a protocol define separation character. For instance,
IP address 192.168.33.56 is encoded into four decimal features with individual
values 192, 168, 33 and 56 respectively. These values are treated as continuous
and can offer insight into additional information such as identifying subnets and
unique nodes. In Shao’s work [12], this splitting technique was found to be much
more effective than the standard one-hot encoding method.

Continuous variables, such as statistical-based features, are individually re-
scaled to have zero-mean and a unit variance. Re-scaling features to a common
scale reduces bias while retaining relationships between the different variables.
Finally, a basic feature selection method using a variance threshold of 0 is used
during training to remove any unimportant features.
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3.3 Machine Learning

Machine learning has become a promising candidate for developing robust and
efficient intrusion detection systems. Three primary learning techniques are com-
monly used for intrusion detection: supervised, semi-supervised, and unsuper-
vised. Supervised and semi-supervised algorithms use labeled data for training
in order to predict the likelihood of a sample belonging to a class; unsupervised
algorithms do not require labels and instead work to uncover latent patterns.

These detection models often interface directly with humans, thus additional
performance metrics such as false positive rates and the incurred monetary costs
must be considered. Ideally, the organization would take the machine learning-
based IDS and implement biases into it allowing them to shape the tool to
their specific requirements or security objectives. Thus, this work considers the
use of supervised machine learning algorithms to create cost-sensitive intrusion
detection systems that adhere to economic requirements.

Cost-Sensitive Supervised Models Similar to traditional signature based IDSs,
the supervised model is trained using labeled attack samples and attempts to
classify these attacks in real-time. One assumption made in most multi-class
classifications tasks is that all errors are equally undesirable. This assumption
is not necessarily true for several environments including intrusion detection,
where a false negative and false positive can have very different impacts.

Cost-sensitive machine learning leverages cost values to accommodate for im-
balanced datasets or differences in misclassification types. Specifically, we can
use economically informed weights to influence the training process of the cost-
sensitive detection model forcing it to prioritize attack classes associated with
higher costs/weights. Four cost-sensitive implementations of traditional super-
vised algorithms are explored in this work: random forest, support vector ma-
chines, XGBoost, and dense neural networks.

Cost-sensitive Random Forest involves factoring weights W into the Gini
index/impurity equation:

1− (w0 ∗ p20 + w1 ∗ p21 + ...+ wn ∗ p2n) (1)

Where wi and pi is the economically informed weight and probability for attack
class i respectively. By weighting each attack class we can adjust the impact that
a misclassification for that particular class has on the model’s decision making.

Cost-sensitive Support Vector Machines (SVM) factor economically informed
weights into the primal objective function:

Min(
ωTω

2
+ C

n∑
i

(wi ∗ ξi)) subject to ξi ≥ 0 (2)

where C is a regularization parameter and ξi is the misclassification allowance
for class i. SVM can be applied to multi-class classification by taking a “one-vs-
one” approach in which multiple binary classifiers are trained to separate pairs
of classes.



A cost-sensitive approach for managing intrusion alerts in OT environments 7

Both extreme gradient boosting (XGBoost) and deep neural networks (DNNs)
train using a defined objective function, or loss function, which tunes the pa-
rameters based on classification errors. For multi-class classification tasks one
common objective function used is the multi-class Cross Entropy loss function
which minimizes the negative log-likelihood over the classes. Cost-sensitive im-
plementations of XGBoost and DNNs can be achieved by including a weighted
version of the multi-class Cross Entropy loss function.

−
∑

wi ∗ yi ∗ log(ŷi) (3)

Where wi, yi, and ŷi represent the economically informed weight, true class, and
predicted class for the ith sample.

Cost-informed weights Traditionally, supervised detection models prescribe equal
weight to all classes and train the model to minimize the total number of false
positive and false negatives. To emphasize a reduction in cost over accuracy, we
consider an economically informed approach which factors the financial costs
incurred by the generated alerts. Specifically, we employ a cost-sensitive super-
vised detection model in which the class weights wi are developed based on the
misclassification cost for attack i.

By weighting the importance of alerts based on the cost of misclassification,
the optimization of the model is shifted from a purely accuracy based metric, to
a minimization of costs. This also introduces flexibility in the model, allowing
it to adapt to different environments where the same error may have varying
costs. There are several methods for developing cost-informed weights; this work
proposes an approach in which the misclassification costs are normalized and
applied as weights. Normalization preserves the weights association with ex-
ploitation and investigation costs.

3.4 Cost-based Scoring Manager

When confronted with real-time network traffic, supervised and unsupervised
models alike will provide a likelihood score corresponding to each attack, which
represents the confidence of the model that the packet is associated with an
attack. A difficulty with machine-learning based models is to choose a threshold
above which alerts are considered to be valid. A threshold which is too low will
result in benign traffic being caught in the filter, and a threshold too high will
allow malicious traffic through.

Given a sample of network traffic alerts, there are four possible classification
outcomes for each alert: false positive, false negative, true positive, and true
negative. The circumstances for these outcomes are shown in Table 1, as well as
the false negative rate, β, and the false positive rate, α. To identify the optimal
filter threshold which minimizes both β and α, the sample traffic, with known
labels, can be evaluated at a series of thresholds.

As discussed above, accuracy alone is not guaranteed to result in cost-effective
configuration. In addition to the training and selection of machine-learning mod-
els, economic information can also be used to make cost-informed decisions about
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Prediction Reality
Malicious Benign

Malicious True Positive False Positive
Benign False Negative True Negative

Rate β = FN
(FN+TP )

α = FP
(FP+TN)

Table 1. Confusion matrix of all possible outcomes.

how to respond to alerts. This is further motivated by the varying cost of false
positive alerts. Certain alerts will require a more detailed and time-consuming
investigation to be cleared, yet this variation in false positive cost is not ac-
counted for in the model training phase. To incorporate economic information
into alert response, we use an optimal filter configuration identification process
outlined by [3]. Using this process, the cost and probability associated with clas-
sification errors can be factored into alert response for a cost-informed response.
This can be done using the following equation:

α∗ = argmin
α

p · β(α) · b+ (1− p) · α · a (4)

where α∗ represents the false positive rate associated with the minimum overall
cost. The cost itself is determined by multiplying the prior probability of the
malicious traffic, p, by the false negative rate, β(α), and the cost of a false
negative, b. This is added to the product of the probability of the traffic being
benign, 1 − p, the false positive rate, α, and the false positive cost, a. Taking
the first order condition of Equation 4 gives us the slope of the indifference line
where the costs of each error are equal. That is,

β′(α∗) = −1− p

p
· a
b

(5)

where the optimal model configuration will be where this indifference line crosses
the ROC curve. By determining the optimal threshold for each alert in the
training sample, the models can be compared for any alert to select the lowest
expected cost response.

4 Datasets for Evaluation

One of the main challenges for intrusion detection research in the OT domain
is the lack of available quality datasets. Several key works have been proposed
to help mitigate the lack of available OT network data including using data
captured from deployed systems, testbeds [1], and simulated environments [8].
Real time deployed environments offer the most accurate source of data when it
comes to OT network behavior. However, the lack of validation when it comes to
the ground truth of the data makes the data unreliable. On the other hand, sim-
ulated environments can be properly validated but can lack the characteristics
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of deployed OT environments. Testbeds for physical OT networks are the ideal
method for generating OT security data as they can exhibit the noise and char-
acteristics of deployed OT environments while allowing proper validation when
labeling attacks. Additionally, testbeds offer the ability to implement attacks and
record the results in real time, which is not possible for deployed environments
as they are often used in critical infrastructure.

This work utilizes two environmental datasets of raw network captures gen-
erated using a physical testbed in the additive manufacturing domain and a
simulated OT environment of an electrical network. With each dataset several
types of commonly encountered attacks were implemented in real-time and the
packets related to those attacks were labeled after the capture. The model is
trained using labeled examples of these attacks.

Our proposed cost-sensitive IDS architecture is evaluated on four unique
scenarios within each environment. These scenarios illustrate varying costs and
organizational cyber security maturity, allowing us to verify consistent perfor-
mance across multiple applications.

4.1 OT Environment 1: Additive Manufacturing

The additive manufacturing testbed is a 3D printing system consisting of five
devices connected over a closed Ethernet network. Four of the nodes are opera-
tional and work together to manufacture parts using various metals and alloys,
the fifth node is a server acting as the target of the implemented attacks. Operat-
ing over the MQTT protocol, the network utilizes the publish-subscribe method
for transmitting data. The workstation, one of the operational nodes, is used by
an operator to send job files and commands to the other devices on the network.

Four datasets were generated from this OT environment consisting of 24
hours of normal traffic, as well as a scan attack, a MitM attack, and an anomaly
attack. The scan attack was created by performing a network scan of the OT
environment. The MitM attack was created by poisoning the ARP-cache allowing
them to observe the network traffic. Finally, the anomaly attack is created by
performing an ICMP ping sweep from a compromised server. Detailed description
of the packet distribution is given in Table 2.

4.2 OT Environment 2: Electric Utility

This environment is characterized by a data set described by [8] and it corre-
sponds to a small electrical network. The network has controllers (or RTUs) that
are in charge of electrical circuits, each with a single supply branch operating at
12,000 V. Controllers provide voltage measurements on each branch to an MTU
using the Modbus/TCP protocol.

Tests were conducted using datasets that involved one MTU and 6 RTUs.
Separate Modbus traffic files containing both normal and malicious traffic were
used in the training and evaluation of the IDS. The first file contains only polling
commands from the MTU to the RTUs represents the normal operational be-
havior of the environment. The remote exploit attack involves an actor using
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Additive Manufacturing

Normal Scan MitM Anomaly - Total
76,195 21,303 410 34 - 97,942

Electrical Utility

Normal File Upload Anomaly Remote Total
74,687 75 1,199 10 121 76,092

Table 2. Dataset packet distributions.

Metasploit’s MS08-netapi exploit to compromise an active RTU. In file trans-
fer, the actor uses the compromised RTU to transfer files to two other RTUs.
The upload executable attack records the actor using the compromised RTU to
upload an executable file to another RTU. In the anomalous attack, the actor
uses the compromised RTU to forge and send fake Modbus commands to other
RTUs. Detailed description of the packet distribution is given in Table 2.

4.3 Evaluation Scenarios

The IDS architecture proposed in this paper is evaluated on its ability to re-
duce overall costs associated with the misclassification of alerts compared to
a strictly accuracy-based IDS. Therefore, we must first assign a cost to each
misclassification of a packet. Such costs are challenging to identify due to the in-
herent differences between organizations, environments, and the changing threat
landscapes over time. Therefore, instead of constricting the IDS evaluation to a
single, limited scenario, we evaluate the IDS across a variety of scenarios rep-
resenting different potential organizations. In total, we introduce four scenarios
to be evaluated in each of the two environments: baseline, amplified attack, un-
even harms, and high salary. The purpose of these scenarios is to illustrate how
varying costs can affect decision making in the model. In practice, we would
expect operators to provide cost estimates reflecting their deeper knowledge of
deployment realities. When calculating the expected cost we take the sum of all
false positives and false negatives multiplied by their respective costs.

Baseline Scenario First, we look to open-source data and prior work to iden-
tify the “baseline” costs for a single implementation. Morin and Moore [10] used
open-source information to estimate the misclassification costs for similar OT
environments. For false positives, they define the cost as the cyber security an-
alyst time wasted investigating spurious alerts. Combining the Bureau of Labor
Statistics median salary for a cyber security analyst with the industry reported
rate of alert review by analysts, Morin and Moore estimated a single false positive
would cost an organization $10.

The OT environments evaluated in [10] are specific implementations of our
additive manufacturing and electric utility environments, therefore we adopt
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Costs

Scenario FP Scan MitM Anomaly -
File Upload Anomaly Remote

Baseline $10 $67 $67 $67 -
$2,500 $2,500 $2,500 $2,500

Amplified
Impact $10 $6,667 $6,667 $6,667 -

$250,000 $250,000 $250,000 $250,000

Uneven
Harms $10 $195.60 $4 $0.40 -

$480 $8,490 $920 $110

High Salary $50 $195.60 $4 $0.40 -
$480 $8,490 $920 $110

Table 3. The four scenarios are shown in the first column. Each row has the estimated
false positive (FP) and false negative costs. The false negative costs are split into
additive manufacturing above the dashed line, and the electric utilty costs below the
dashed line.

their cost estimates. For the additive manufacturing environment, they identify
four 3D printers with hourly titanium alloy printing costs. The impact in this en-
vironment is captured by an hour of lost printing material. We take the average
cost of all four printers, resulting in an estimated attack cost of approximately
$20,000. Although a false negative alert poses a risk, not all false negatives will
result in a successful attack. Therefore, we choose a 1% probability that a false
negative will result in a loss, resulting in an estimated false negative cost of $200.
As there are three potential attack vectors for the additive manufacturing envi-
ronment (scanning, Man-in-the-Middle, and anomaly), we evenly distribute the
estimated impact across each. That is, the false negative cost for each malicious
packet type is $200 divided by three, or $67.

For the electric utility environment, [10] measure the impact as the financial
loss resulting in a momentary electrical outage in four different U.S. cities. We
again take the average cost from the four samples, which provides an estimated
cyber attack cost of approximately $1,000,000. Similar to the additive manufac-
turing attacks, it is reasonable to assume not all false negatives will result in a
successful attack, and we again take 1% of this cost. As a result, the cost of a
false negative in the electric utility environment is $10,000 divided evenly across
the four packet types, resulting in a false negative cost of $2,500. Note that the
electric utility environment has four malicious packet types versus the three in
the additive manufacturing environment.

Amplified Impact Scenario The second scenario we evaluate is the “amplified
impact” scenario. In this scenario we leave the analyst salary unchanged, while
raising all attack impacts. An electric utility example of such a scenario could
be the introduction of industrial and commercial losses to the outage impact.
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Existing literature points out that the majority of losses from an electrical outage
are from industrial and commercial customers. [13] As a utility provider becomes
more informed of the true cost, the impact may become amplified while the
analyst salary remains unaffected. For this scenario, we take the baseline scenario
false negative costs and multiply them by ten.

Uneven Harms Scenario In the first two scenarios we have evenly distributed
the estimated false negative costs across malicious packet types. The underlying
assumption is that the organization is uninformed about which packet types
are most likely to appear. The reality is that this is likely untrue, and certain
malicious packets will appear more often. In the third scenario, “uneven harms”,
we consider an organization which is well informed about the appearance rate
of malicious packet types. In this case, we multiply the baseline costs by the
relative appearance rates of each packet type in the training data. For additive
manufacturing, Man-in-the-Middle packets make up 2% of all malicious packets,
and therefore we multiply the $200 original cost by 0.02 for a cost of $4.

High Salary Scenario Finally, we consider the “high salary” scenario when
analysts are paid a higher salary, resulting in costlier false positives. For this
scenario we maintain the costs from the uneven harms scenario, and multiply
the false positive cost by five, resulting in a false positive cost of $50. This could
be a scenario in which more experienced analysts are required, or that more
analysts are involved in alert remediation.

5 Evaluation

We begin our evaluation by comparing the cost-informed results of four differ-
ent machine-learning classification models to identify the model best suited for
cost-informed weight information. Next, we measure the relationship between
accuracy and cost as the machine-learning weights are gradually adjusted to
align with the relative cost of each type of misclassification. While a cost re-
duction in one scenario is interesting, we proceed to evaluate the consistency of
these results by applying these cost-informed weights to four unique scenarios
across both environments. Finally, we combine the cost-informed weights of the
best model with the scoring manager to measure the overall performance of our
proposed IDS architecture.

5.1 Cost-Sensitive Model Selection

The four classifier models described in Section 3 each incorporate the economic
information differently. Because of this, we start our analysis by evaluating the
cost performance differences between them. The expected cost of a model is
determined by training each model on the cost-informed weights and summing
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SVM Random Forest XGBoost DNN

Additive Manufacturing

Baseline $1,232.00 $1,290.10 $1,097.55 $1,105.42
Amplified Impact $741,109.06 $108,376.47 $42,631.35 $78,980.45
Uneven Harms $26,088.60 $26,851.32 $9,564.45 $13,323.30
High Salary $27,269.10 $21,729.38 $14,130.59 $14,059.36

Electrical Utility

Baseline $181,910.00 $59,330.00 $840.00 $92,043.00
Amplified Impact $10,146,493.33 $4,166,760.00 $28,896.66 $38,774,440.00
Uneven Harms $61,116.44 $26,743.62 $9,364.88 $48,819.28
High Salary $68,186.44 $25,176.52 $14,011.62 $49,712.96

Table 4. Cost comparison of the four proposed models

up the cost of each classification error during the testing phase. We perform this
test for each scenario in both environments. The results can be seen in Table 4.

The data was split using a 70/30 train-test split and the recorded values are
averaged over three different controlled seeds. It is important to note that the
incurred cost values are entirely dependent on the proposed scenarios, meaning
that scenarios with overall low attack costs will have lower expected costs than
scenarios with higher attack costs (e.g. scenarios 1 and 2).

We find the cost-informed XGBoost model achieved the best performance in
terms of minimizing the overall expected cost in seven of the eight scenarios. The
single outlier was the fourth scenario in the additive manufacturing environment.
In this scenario the deep neural network achieved a marginally lower cost than
XGBoost. Although all models had positive results, we find the XGBoost model
was best suited for cost-informed weights. Therefore, any evaluations henceforth
reported on will be done using the XGBoost classifier model.

5.2 Cost-Informed Weights

Before testing each scenario, we first seek to measure the interaction between the
costs and accuracy as the model transitions from a purely accuracy-based model
to a cost-informed model. Prior to training, the costs are normalized to a scale
of [0, 1] weights. The accuracy-based model, which prioritizes a minimization of
misclassifications, evenly weights each error type. Specifically, for the additive
manufacturing environment with four possible packet types, the weights are all
0.25. For the electric utility environment with five packet types, these weights are
all 0.2. The final cost-informed weights, which will differ from the even weights
to varying degrees, are also normalized to [0, 1]. By breaking up the difference
between the accuracy and cost-informed weights into a set of 100 equidistant
intermediate weights, we can observe the relationship between accuracy and cost
as the weights progressively become cost-informed. The result of this process can
be seen in Figure 2. The left two plots show the cost and accuracy as the weights
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Fig. 2. The cost (top) and accuracy (bottom) for the electric utility (left) and additive
manufacturing (right) environments using the baseline cost estimates. The left side
of the plots are evenly weighted models, and the right side is the fully cost-informed
weights.

progress from evenly weighted to cost-informed weights for the electric utility,
and the right two plots show the same information for the additive manufacturing
weights. For both environments we used the baseline scenario for cost estimates.

The plots in Figure 2 illustrate the trade-off between cost and accuracy for
both environments. The electric utility costs fall steadily and significantly, from
an initial cost of $62,560 at even weights, to $6,790 at the cost-informed weights
for an 89% decrease. The change in accuracy is a noticeable, but relatively minor
0.66% decrease. For the additive manufacturing environment, the change in cost
drops from $5,487 to $4,737, for a 14% decrease. Again, we see a relatively minor
accuracy drop of 0.09%. Both sets of plots are experiencing a decrease in costs
as the model permits an increase in the relatively cheaper false positives to catch
more of the costly attacks. In the next section we will evaluate how these costs
are handled across all scenarios.

5.3 Cost-Informed Scenarios

We now investigate how the performance of a cost-informed model changes across
our four proposed scenarios. For robustness, we test our scenarios using twenty
unique splits of the data for each scenario. In total, we train and test the model
80 times. While each scenario is unique, the direct comparisons between the
baseline and amplified impact scenarios, as well as the uneven harms and high
salary scenarios, are particularly interesting. The primary difference between
the baseline and amplified impact scenarios are the general false negative costs.
In both scenarios the analyst salary remains constant, and the organization
remains equally uninformed about attack likelihoods, yet the relative cost of false
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Change(%) Misclassification Change (%)
Scenario Accuracy Cost Normal Scan MitM Anomaly

Baseline -0.07 -15.35 1.91 -0.11 -0.25 -0.25

Amplified
Impact -9.5 -83.77 125.8 -0.56 -0.94 -0.5

Uneven
Harms -0.17 -16.96 0.33 -0.33 0.51 6.75

High Salary -0.18 -23.44 -0.54 -0.20 0.79 6.75

Table 5. The four scenarios for the additive manufacturing environment are shown in
the first column. The second and third columns show the accuracy and cost change as a
percentage compared to even weights. The last four columns show the misclassification
change as a percentage compared to even weights, where a positive number represents
a decrease in accuracy.

negatives becomes larger. As such, missing a legitimate attack is amplified by a
factor of ten and an organization will tolerate ten times more false positives than
in the baseline scenario. This comparison highlights the false negative aversion
of an organization as false negative costs increase relative to false positive costs.
For the uneven harms and high salary scenarios, the analysts are well informed
about packet likelihoods. However, the false positive cost increases in the high
salary scenario as analyst time is costlier. Therefore, these scenarios highlight
the false positive aversion introduced by higher investigation costs.

In the remainder of this section we will explore each of these relationships in
both environments. The additive manufacturing results can be seen in Table 5,
and the electric utility results can be seein in Table 6.

Additive Manufacturing False Negative Aversion Observing the baseline
scenario from Table 5, we see a median decrease in cost of 15.35%, and a me-
dian decrease in accuracy of 0.07%. These values align with the single instance
evaluated in the previous section and shown in Figure 2. The amplified impact
scenario, where the cost of a successful attack is 10 times larger, shows a larger
decrease in median accuracy of 9.5%, and an 84% decrease in median cost. The
last four columns highlight where the change in accuracy is most prevalent. In
the baseline scenario a 1.9% increase in false positives over even weights is tol-
erated to reduce a minor reduction in each false negative rate. Compare this
to the amplified impact scenario where false positive rates increase 126% over
even weights to push the malicious scan, MitM, and anomaly false negatives
down by 0.56%, 0.94% and 0.5% respectively. Because a single false negative is
an overwhelming cost driver, this relatively minor decrease at the expense of a
significantly higher false positive rate remains cost-effective.
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Change(%) Misclassification Change (%)
Scenario Accuracy Cost Normal File Upload Anomaly Remote

Baseline -0.7 -79 65 -1 -0.89 -0.75 -1

Amplified
Impact -9.96 -89.6 920.7 -1 -1 -0.86 -1

Uneven
Harms -1.08 -85.44 85.67 0.33 -1 -0.56 0

High Salary -0.12 -77.42 12.88 0.33 -0.88 -0.56 0

Table 6. The four scenarios for the electric utility environment are shown in the
first column. The second and third columns show the accuracy and cost change as a
percentage compared to even weights. The last five columns show the misclassification
change as a percentage compared to even weights.

Additive Manufacturing False Positive Aversion The uneven harms and
high salary scenarios are shown in the last two rows of Table 5. In both scenarios
we see the median accuracy remain largely unchanged, dropping by 0.17% in
the uneven harms scenario, and 0.18% in the high salary scenario. In the uneven
harms scenario the well informed cyber security team is able to reduce the median
costs by just under 17%, which is better than the median baseline cost from
an uninformed cyber security team. This is highlighted in the misclassification
columns where we see the relatively uncommon anomaly and MitM traffic is
often ignored to improve the accurate classification of the much more common
scanning traffic, even at the expense of increased false positives. For the high
salary scenario, the analyst salary is five times higher, resulting in costlier false
positives. As a result, the model improves the median cost by 23% over even
weights by including the prioritization of minimizing the costly false positives in
addition to the common scanning traffic.

Electric Utility False Negative Aversion The false negative aversion within
the electric utility environment can be seen in Table 6. In the first two rows we
again see the median estimated costs decrease significantly for both scenarios.
The costs decrease from 79% in the baseline scenario, to 89.6% in the amplified
impact scenario as the attacks become costlier. The median accuracy also drops,
with a 0.7% decrease in accuracy in between even weights and baseline weights,
to a 10% for the amplified impact scenario. In the misclassification columns we
see that this decrease in accuracy is the result of increased misclassification in
the less costly false positives. In the baseline scenario false positives increase by
65% over even weights, while the amplified impact scenario results in a 920.7%
increase in false positives. This increase in false positives results in a decrease in
false negatives for the much more expensive upload and anomaly attacks.
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Scenario Metric Cost-Informed
Weights Scoring Manager Both

Baseline
Accuracy 0.9989 (-0.02%) 0.9497 (-4.94%) 0.9987 (-0.04%)
F1-Score 0.9980 (-0.04%) 0.8991 (-9.94%) 0.9974 (-0.09%)

Cost $1,246 (8.21%) $15,095 (1211%) $1,098 (-4.65%)

Amplified
Impact

Accuracy 0.9403 (1.06%) 0.4881 (-51.15%) 0.9379 (-6.12%)
F1-Score 0.8810 (-11.75%) 0.5386 (-46.04%) 0.8768 (-12.17%)

Cost $50,807 (-52.41%) $172,599 (61.07%) $42,631 (-60.06%)

Uneven
Harms

Accuracy 0.9906 (-0.86%) 0.9414 (-5.78%) 0.9939 (-0.52%)
F1-Score 0.9798 (-1.85%) 0.8829 (-11.56%) 0.9872 (-1.11%)

Cost $10,685 (-83.24%) $44,709 (-29.85%) $9,564 (-84.99%)

High
Salary

Accuracy 0.9955 (-0.36%) 0.9494 (-4.97%) 0.9947 (-0.44%)
F1-Score 0.9908 (-0.76%) 0.8986 (-9.98%) 0.9889 (-0.95%)

Cost $19,962 (-68.84%) $101,610 (58.58%) $14,131 (-77.94%)
Table 7. Accuracy, F1-Score and cost change (and percent change) from baseline
configuration for each IDS architecture configuration across all four scenarios in the
additive manufacturing environment. The best improvement in each metric is bolded.

Electric Utility False Positive Aversion The bottom two rows of Table 6
show the uneven harms and high salary scenarios for the electric utility envi-
ronment. Both show improvement in median cost reduction, again showing a
decrease in false positives in the high salary scenario compared to the uneven
harms scenario. However, unlike the additive manufacturing scenario, we see
the median accuracy increase in the high salary scenario relative to the uneven
harms scenario. As a result, the median cost reduction is lower for the high salary
scenario. This is a result of the increased false negative costs in the electric util-
ity environment. As a result, false positives are still largely preferred over false
negatives and the model slightly reduces sensitivity to upload attacks to increase
accuracy. Still, the median cost reduction for high salary is a 77% improvement
over even weights.

5.4 Cost-Sensitive Framework Evaluation

The cost-informed weights are the first step of introducing economic informa-
tion into the proposed IDS architecture. After the models are trained on these
weights, the classification scores are then passed to the second economic stage:
the scoring manager. The scoring manager assesses the likelihood scores and fil-
ters alerts based on the optimal filter configuration described in Section 3.4. In
this section we add the scoring manager to the cost-informed weights to evaluate
the performance of our IDS architecture. The IDS architecture is evaluated in
four configurations: no economic information, cost-informed weights only, scor-
ing manager only, and finally the combination of cost-informed weights and the
scoring manager.

The first configuration is no economic influence, and uses a traditional su-
pervised model and even weights which minimize misclassifications. The second
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Scenario Metric Cost-Informed
Weights Scoring Manager Both

Baseline
Accuracy 0.9993 -(0.04%) 0.9989 (-0.08%) 0.9988 (-0.09%)
F1-Score 0.9814 -(1.06%) 0.9741 (-1.80%) 0.9689 (-2.32%)

Cost $967 (-44.87%) $887 (-49.43%) $840 (-52.09%)

Amplified
Impact

Accuracy 0.9799 (-1.98%) 0.5592 (-44.07%) 0.9829 (-1.68%)
F1-Score 0.6455 (-34.92%) 0.3490 (-64.81%) 0.7187 (-27.55%)

Cost $46,240 (-73.58%) $150,613 (-13.94%) $28,897 (-83.49%)

Uneven
Harms

Accuracy 0.9989 (-0.54%) 0.9989 (-0.08%) 0.9904 (-0.93)%
F1-Score 0.8762 (-11.67%) 0.9741 (-1.80%) 0.7993 (-19.43)%

Cost $10,741 (-58.69%) $12,787 (-50.82%) $9,365 (-63.98%)

High
Salary

Accuracy 0.9989 (-0.07%) 0.9989 (-0.08%) 0.9982 (-0.15%)
F1-Score 0.9776 (-1.44%) 0.9741 (-1.80%) 0.9698 (-2.23%)

Cost $13,273 (-48.97%) $13,667 (-47.46%) $14,012 (-46.13%)
Table 8. Accuracy, F1-Score and cost change (and percent change) from baseline
configuration for each IDS architecture configuration across all four scenarios in the
electric utility environment. The best improvement in each metric is bolded.

configuration is cost-informed weights only, which takes the costs defined by the
scenario, normalizes them into weights, and uses these weights during the model
training process. This is the configuration used in the previous evaluation of
cost-informed scenarios. The third configuration is scoring manager only, which
uses a traditional supervised model using even weights as input into the scor-
ing manager. The scoring manager then uses the scenario costs to determine
the optimal filter threshold for each class based on Eq. 4. The accuracy based
model will output likelihood scores for each packet class, and the largest dif-
ference between likelihood score and optimal filter threshold is selected as the
predicted class. Specifically, the class which is furthest from the break-even cost
is chosen as the predicted class. If no attack score exceeds its individual threshold
then the packet is labeled as normal. The fourth and final configuration considers
both a cost-informed weights model and the scoring manager. The cost-informed
weights model produces a score for each packet. These scores are then sent to
the scoring manager which uses the defined costs to find individual class-specific
thresholds that result in the minimum overall cost within the training data. The
combination of cost-informed weights and cost-based optimal filters are used to
evaluate the testing data.

For evaluation purposes, the evenly weighted accuracy-based IDS configura-
tion is treated as a baseline. The accuracy, cost, and F1-Score of the remaining
three configurations are shown as raw values and percent change from the base-
line configuration. The configurations are evaluated on each of the four scenarios
in both environments. Results for the additive manufacturing environment are
displayed in Table 7 and the electrical utility results are shown in Table 8.

The tables show that across all but the first scenario in the additive man-
ufacturing environment, the inclusion of cost-informed weights leads to both
significant average cost decreases and minimal average accuracy and F1-score
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degradation. The second configuration, where only the scoring manager is used,
provided lower average costs in five of the eight scenarios. All three increased av-
erage cost scenarios were in the additive manufacturing environment. We believe
this is due to the distributions for each attack class in the additive manufactur-
ing environment. The equation used to calculate optimal threshold values relies
heavily on the probability of the class appearing in the data. Thus, the scoring
manager performs best in highly imbalanced environments, which the additive
manufacturing environment was not.

It was found that in both environments, incorporating both the cost-informed
weights model as well as the scoring manager resulted in the minimum expected
cost in nearly every scenario. Scenario 4 in the electric utility environment was
the single outlier where cost-informed weights outperformed the other two con-
figurations. However, in this scenario the combination configuration did not per-
form poortly, rather all three configurations performed similarly well, with all
three average expected cost reductions being in the range of 46% - 49%.

6 Conclusion

This work demonstrates the potential benefits of including cost-sensitive learn-
ing in the development of intrusion detection systems within OT networks. By
considering the financial impact of different classification errors, the detection
system can make economically-informed decisions, trading minor accuracy re-
ductions for significant cost savings. This work proposed a configurable IDS
framework which incorporates two cost-sensitive techniques, including a cost-
based weighting scheme which prioritizes classification errors based on their es-
timated cost, and a cost-based scoring manager which screens alerts based on an
optimized filter. By integrating these techniques, the IDS shifts its focus from
maximizing accuracy to minimizing the expected costs.

The costs used in this paper were based on prior estimates by [10]. How-
ever, these costs can be modified to accurately reflect any individual scenario.
The ratio of misclassification costs drives the performance of our model, not the
costs themselves. For an organization that is able to estimate their implemen-
tation specific costs, this framework offers an economically-informed alternative
to accuracy based IDS techniques.

Results emphasize the importance of cost-aware decision making for cyber
defense. The inclusion of cost-sensitive techniques into OT network security pro-
vides organizations with the ability to be proactive and make more informed
security decisions in order to mitigate the potential operational and financial
consequences associated with cyber attacks.
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